منابع مشابه
Scanning quantum decoherence microscopy.
The use of qubits as sensitive nanoscale magnetometers has been studied theoretically and recently demonstrated experimentally. In this paper we propose a new concept, in which a scanning two-state quantum system is used to probe a sample through the subtle effects of decoherence. Mapping both the Hamiltonian and decoherence properties of a qubit simultaneously provides a unique image of the ma...
متن کاملGaSb/GaAs quantum dot formation and demolition studied with cross-sectional scanning tunneling microscopy
We present a cross-sectional scanning tunneling microscopy study of GaSb/GaAs quantum dots grown by molecular beam epitaxy. Various nanostructures are observed as a function of the growth parameters. During growth, relaxation of the high local strain fields of the nanostructures plays an important role in their formation. Pyramidal dots with a high Sb content are often accompanied by threading ...
متن کاملScanning hall probe microscopy technique for investigation of magnetic properties
Scanning Hall Probe Microscopy (SHPM) is a scanning probe microscopy technique developed to observe and image magnetic fields locally. This method is based on application of the Hall Effect, supplied by a micro hall probe attached to the end of cantilever as a sensor. SHPM provides direct quantitative information on the magnetic state of a material and can also image magnetic induction under a...
متن کامل4Pi microscopy of quantum dot-labeled cellular structures.
The most prominent restrictions of fluorescence microscopy are the limited resolution and the finite signal. Established conventional, confocal, and multiphoton microscopes resolve at best approximately 200nm in the focal plane and only 500nm in depth. Additionally, organic fluorophores and fluorescent proteins are bleached after 10(4)-10(5) excitation cycles. To overcome these restrictions, we...
متن کاملScanned gate microscopy of a one-dimensional quantum dot.
We analyze electrostatic interaction between a sharp conducting tip and a thin one-dimensional wire, e.g., a carbon nanotube, in a scanned gate microscopy (SGM) experiment. The problem is analytically tractable if the wire resides on a thin dielectric substrate above a metallic backgate. The characteristic spatial scale of the electrostatic coupling to the tip is equal to its height above the s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review Letters
سال: 2015
ISSN: 0031-9007,1079-7114
DOI: 10.1103/physrevlett.115.026101